Fuzzy system identification by generating and evolutionary optimizing fuzzy rule bases consisting of relevant fuzzy rules

نویسندگان

  • P. Krause
  • A. Krone
  • T. Slawinski
چکیده

One approach for system identification among many others is the fuzzy identification approach. The advantage of this approach compared to other analytical approaches is, that it is not necessary to make an assumption for the model to be used for the identification. In addition, the fuzzy approach can handle nonlinearities easier than analytical approaches. The Fuzzy–ROSA method is a method for data–based generation of fuzzy rules. This is the first step of a two step identification process. The second step is the optimization of the remaining free parameters, i.e. the composition of the rule base and the linguistic terms, to further improve the quality of the model and obtain small interpretable rule bases. In this paper, a new evolutionary strategy for the optimization of the linguistic terms of the output variable is presented. The effectiveness of the two step fuzzy identification is demonstrated on the benchmark problem ’kin dataset’ of the Delve dataset repository and the results are compared to analytical and neural network approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy system identi cation by generating and evolutionary optimizing fuzzy rule bases consisting of relevant fuzzy rules

One approach for system identi cation among many others is the fuzzy identi cation approach. The advantage of this approach compared to other analytical approaches is, that it is not necessary to make an assumption for the model to be used for the identi cation. In addition, the fuzzy approach can handle nonlinearities easier than analytical approaches. The Fuzzy{ROSA method is a method for dat...

متن کامل

Improvement of Rule Generation Methods for Fuzzy Controller

This paper proposes fuzzy modeling using obtained data. Fuzzy system is known as knowledge-based or rule-bases system. The most important part of fuzzy system is rule-base. One of problems of generation of fuzzy rule with training data is inconsistence data. Existence of inconsistence and uncertain states in training data causes high error in modeling. Here, Probability fuzzy system presents to...

متن کامل

A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection

A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...

متن کامل

SECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS

In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...

متن کامل

Fuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring

There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000